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Abstract

In this paper, we analyse the recent principal volatility components analysis pro-

cedure. The procedure overcomes several difficulties in modelling and forecasting the

conditional covariance matrix in large dimensions arising from the curse of dimen-

sionality. We show that outliers have a devastating effect on the construction of the

principal volatility components and on the forecast of the conditional covariance ma-

trix and consequently in economic and financial applications based on this forecast.

We propose a robust procedure and analyse its finite sample properties by means

of Monte Carlo experiments and also illustrate it using empirical data. The robust

procedure outperforms the classical method in simulated and empirical data.
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1 Introduction

Modelling and forecasting volatilities and co-volatilities play a crucial role in many economic

and financial applications such as portfolio allocation, risk measures, option pricing, secu-
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rity regulations and hedging strategies (Chiou and Tsay, 2008; Hammoudeh et al., 2010;

Rombouts and Stentoft, 2011; Basher and Sadorsky, 2016; Wang and Liu, 2016).

Given the infeasibility and inflexibility of most classical multivariate volatility models

in large dimensions, researchers and practitioners have been looking for alternative tools

to circumvent the curse of dimensionality when modelling and forecasting (co)volatilities in

high-dimensional data. In this sense, some alternative approaches have been suggested in

the last years. See, for instance, Lopes et al. (2012), Fan et al. (2012), Hafner and Reznikova

(2012), Pakel et al. (2014), Gruber and West (2016), Kastner (2016), Li et al. (2016) and

Engle et al. (2017), among others. Furthermore, based on the idea that co-movements in

the market can be driven by a few components, factor models appear in the economic and

financial literature as an alternative way to achieve dimension reduction and to tackle the

curse of dimensionality. See, for instance, Fan et al. (2008), Pan et al. (2010), Matteson and

Tsay (2011), Garćıa-Ferrer et al. (2012), Santos and Moura (2014), Matilainen et al. (2015)

and Barigozzi and Hallin (2015) for some references.

In the spirit of dimensionality reduction, an innovative approach based on the classi-

cal principal component analysis (PCA), called principal volatility components (PVC), has

been recently proposed by Hu and Tsay (2014a) and Li et al. (2016). This methodology pro-

duces two types of components. The first type corresponds to components with conditional

covariance matrix evolving over time whilst the other type corresponds to components with

constant conditional covariance matrix. This methodology is attractive because after obtain-

ing the volatility components, the problem of modelling and forecasting the (co)volatilities

of the entire system drop down into modelling and forecasting the (co)volatilities of the

volatility components with heteroscedastic dynamics since the remaining components have

constant volatility.

On the other hand, it is well known that outliers are not unusual in financial time se-

ries and several works show how outliers affect dramatically the forecast of (co)volatilities

(Muler and Yohai, 2008; Boudt and Croux, 2010; Carnero et al., 2012; Boudt et al., 2013;

Grané et al., 2014; Trućıos and Hotta, 2016; Trućıos et al., 2017; Trućıos, 2018) and con-

sequently financial applications (Mendes and Leal, 2005; Welsch and Zhou, 2007; Trućıos

et al., 2018). See, Hotta and Trućıos (2018) for a good recent review about outliers in
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(M)GARCH models. According to Sakata and White (1998) , “A prominent characteristic

of asset price movements is the episodic occurrence of crashes and rallies,..” which will lead

to outliers. For instance, an abnormal price in an isolated day or an sudden increase or

decrease of an asset price lead to additive type outliers.

Furthermore, there is evidence showing that PCA is very sensitive to the presence of

outliers (Croux and Haesbroeck, 2000; Hubert et al., 2005; Candès et al., 2011; Greco and

Farcomeni, 2016). Thus, procedures based on similar methodology are also expected to be

sensitive to outliers.

The contribution of this paper is threefold. First, by means of Monte Carlo experiments,

we investigate the performance of PVC in the presence of additive outliers showing that

they have a devastating effect on this procedure, even when moderate outliers are present.

Second, we propose a robust principal volatility component (RPVC) procedure which shows

to have good finite sample properties and also does not suffer the Lucas critique 1. Third,

we compare empirically the GPVC and RPVC procedures in a Value-at-Risk and minimum

variance portfolio context showing that a better portfolio performance can be obtained using

the latter procedure.

The rest of the paper is organized as follows. Section 2 presents the PVC of Hu and Tsay

(2014a), the generalized version of Li et al. (2016) and our robust procedure. In Section 3 an

extensive Monte Carlo experiment is carried out to evaluate the finite sample properties of

the procedures in contaminated and uncontaminated series. Section 4 presents an empirical

application of daily returns with 73 stocks of the Nasdaq-100 index and show that our robust

procedure has better performance when applied to the selection of the minimum variance

portfolio. Finally, Section 5 presents the main conclusions and future works.

1Lucas critique is a very important concept in economics and also in econometrics. The super-exogeneity
test proposed by Favero and Hendry (1992) is one way to test Lucas critique. Hendry and Santos (2010)
shows the relationship between outliers and structural break with super-exogeneity and they show that
outliers and structural breaks can induce loss of invariance, therefore Lucas critique, even when the model
is invariant. These procedures are valid for models for the conditional mean and also for the conditional
variance. Our method that robustify the PVC methods does not suffer from the Lucas critique which is not
the case for the usual methods of PVC.
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2 Volatility components

Let yt = (y1t, ..., yNt)
′ a N-dimensional vector with E(yt|Ft−1) = 0 where Ft−1 denotes the

information available up to time (t− 1) and let MN×N = [AN×r BN×(N−r)] an orthogonal

matrix. Observe that if we denote ft = A′yt and εt = BB′yt, we can rewrite yt as

yt = MM ′yt = (AA′ +BB′)yt = Aft + εt. (1)

Hu and Tsay (2014a) and Li et al. (2016) introduce methodologies on which, under mild

conditions, it is possible to find B such that V ar(εt|Ft−1) = V ar(εt), i.e. , the second term

εt contains homoscedastic components and all the conditional heteroscedastic components

come from the first term. Although model (1) has the same form of the classical factor

model, there are some differences between them. First, model (1) splits yt into two terms,

one explaining the conditional heteroscedastic dynamic (ft) and the other one driven by com-

ponents with constant volatility (εt). Additionally, ft and εt are not necessary uncorrelated.

Finally, none assumption is imposed directly on ft and εt and all the features described

previously are consequences of the eigenvalue-eigenvector decomposition described in Hu

and Tsay (2014a) and Li et al. (2016) respectively. This model is also particularly useful

because it reduces considerably the number of parameters to be estimated circumventing

the curse of dimensionality.

We briefly introduce the approaches of Hu and Tsay (2014a) and Li et al. (2016), denoted

by PVC and GPVC respectively. These approaches allow obtaining components with the

features described previously. Additionally, knowing the bad influence of outliers in classical

methodologies and inspired on the comments of Franke (2014) and Hu and Tsay (2014b)

about the robustness of the PVC procedure, we introduce a robust procedure which is less

sensitive to additive outliers.

2.1 Principal volatility components (PVC)

Let us assume that the vector yt defined previously is weakly stationary with finite fourth-

order moment. Hu and Tsay (2014a) consider the eigenvalue-eigenvector decomposition of

the cumulative generalized kurtosis matrix given by Γ∞M = ΛM where Λ is a diagonal
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matrix of eigenvalues in descending order, M is the associated normalized eigenvectors and

Γ∞ is the cumulative generalized kurtosis matrix of yt defined as

Γ∞ =
∞∑
k=1

N∑
i=1

N∑
j=1

E2 [(yty
′
t − Σ) (xij,t−k − E (Xij))] , (2)

where Σ is the unconditional covariance matrix and xij,t−k = r(yi,t−kyj,t−k), i.e., it is a

function of the cross-product yi,t−kyj,t−k
2. The k-th volatility component is defined as zkt =

m′kyt, wheremk is the eigenvector associated with the k-th largest eigenvalue and corresponds

to the k-th column of M . Hu and Tsay (2014a) proves that if mk is an eigenvector associated

with a zero eigenvalue of Γ∞, the linear combinationm′kyt has constant volatility (See Lemma

1 — Theorem 1 of Hu and Tsay (2014a)). Additionally, it can also be proved that under

mild conditions (Theorem 1 of Hu and Tsay (2014a)) there exists N−r linearly independent

combinations of yt with constant volatility, where r = rank(Γ∞).

In practice, (2) is estimated by

Γ̂g =

g∑
k=1

N∑
i=1

N∑
j=1

(
1− k

T

)2
[

1

T

T∑
t=k+1

[(
yty
′
t − Σ̂

)
(xij,t−k − x̄ij)

]]2

, (3)

where Σ̂ is the sample covariance matrix, x̄ij is the sample mean of xij,t, g is a positive

integer that represents a lag order and T is the sample size. For more details see Hu and

Tsay (2014a) and Andreou and Ghysels (2014).

As pointed out by Hu and Tsay (2014a), traditional PC methods applied to yt depends

on the covariance matrix, while PVC is focused on the dynamic dependence of the volatility

and concerned with the fourth moments.

2.2 Generalized principal volatility components (GPVC)

The PVC of Hu and Tsay (2014a) assumes that the vector series has finite fourth-order

moment. However, there is evidence showing that in many financial series this assumption

2In their simulations and empirical application Hu and Tsay (2014a) use the Huber’s function defined as

r(w) =


w, if |w| ≤ c2,
2c
√
w − c2, if w > c2,

c2 − 2c
√
|w|, if w < −c2.
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does not hold (Zhu and Ling, 2011). To relax this assumption, Li et al. (2016), inspired by

the paper of Pan et al. (2010), propose an alternative PVC procedure, denoted by GPVC,

which requires only finite second-order moments.

In the GPVC, the cumulative generalized kurtosis matrix (2) is replaced by

G =

g∑
k=1

T∑
t=1

ω(yt)E
2 [(yty

′
t − Σ) I(‖yt−k‖ ≤ ‖yt‖)] , (4)

where g is a fixed number, ω(·) is a weight function and ‖ · ‖ is the L1 norm. Li et al. (2016)

test different values of g and conclude that the procedure is robust to the choice of g. The

matrix G is estimated in a natural way by

Ĝ =

g∑
k=1

T∑
τ=1

ω(yτ )

[
1

T − k

T∑
t=k+1

[(
yty
′
t − Σ̂

)
I(‖yt−k‖ ≤ ‖yτ‖)

]]2

. (5)

Similarly to the PVC procedure, the GPVC procedure considers the k-th volatility com-

ponent estimated as zkt = m′kyt, but with Γ̂g substituted by Ĝ. An important difference

between PVC and GPVC is that the first is based on the fourth moment, while the second

is based on second moments.

Both procedures present a good performance with a slightly better performance in favour

of the GPVC procedure, mainly when εt is heavy-tailed distributed

However, these procedures have two drawbacks. The first one, which is not discussed

here, is related to the problem of dealing with N/T → 1 or even N > T . The second

one, which is the focus of this paper, is related to the presence of additive outliers that, as

discussed previously, can have several implications in modelling and forecasting volatility

(Boudt et al., 2013; Grané et al., 2014; Trućıos et al., 2017, 2018). These outliers are not

unusual and can be related to financial crashes, elections, wars, macroeconomic news and

terrorist attack (Charles and Darné, 2014; Laurent et al., 2016).

Because both procedures are based on a methodology similar to the classical PCA, which

is very sensitive to atypical observations (Croux and Haesbroeck, 2000; Hubert et al., 2005;

Candès et al., 2011; Greco and Farcomeni, 2016) and in addition considering that both

procedures focus on the estimation and prediction of the conditional covariance matrix,

which are badly affected by additive outliers (Carnero et al., 2012; Boudt et al., 2013;
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Trućıos et al., 2017, 2018) it is important to know whether and how outliers affect the

(G)PVC procedures and consequently their financial applications. In a second step, it is

interesting to find an alternative or a robust procedure, which is pursued in the following

section.

2.3 Robust principal volatility components (RPVC)

In order to obtain a procedure less sensitive to additive outliers, we robustify the estimator

given in (5). The robust procedure is based on a robust estimator of the unconditional

covariance matrix and a weighted estimator of E [(yty
′
t − Σ) I(‖yt−k‖ ≤ ‖yt‖)]. We replace

the matrix (5) by a less sensitive matrix defined as

ĜR =

g∑
k=1

T∑
τ=1

ω(yτ )

[
T∑

t=k+1

δ∗(d2
t )
{

(yty
′
t − Σ̂R)I(‖yt−k‖ ≤ ‖yτ‖)

}]2

, (6)

where ω(·) = 1/T as in Li et al. (2016)3, d2
t is the robust square Mahalanobis distance given

by d2
t = (yt−µ̂R)′Σ̂−1

t (yt−µ̂R) with Σ̂t = 0.01ρ(y′t−1yt−1)+0.99Σ̂t−1, Σ̂1 = Σ̂R and µ̂R and Σ̂R

being a robust estimates of the unconditional mean and covariance matrix obtained using

the minimum covariance determinant (MCD) estimator of Rousseeuw (1984) implemented

with the algorithm of Hubert et al. (2012). Finally, ρ(·) and δ(·) are given by

ρ(xt) =


xt, if d2t ≤ c,

Σ̂R, if d2t > c,

δ(x) =


1, if x ≤ c,

1
x
, if x > c,

and δ∗(·) = δ(·)/||δ(·)||, where ‖ · ‖ is the L1 norm. The value c in ρ(·) and δ(·) is a

threshold parameter defined prior to the estimation procedure. In our simulations and

empirical application we use c as the 0.99 quantile of the empirical distribution of d2
t .

Observe that, to avoid that returns corresponding to periods with high volatility being

considered as possible outliers we incorporate in the squared Mahalanobis distance a covari-

ance matrix evolving obtained by a procedure that can be seen as a robust RiskMetrics 1994

Smoother with λ = 0.99. Similar approaches have also been used in, for instance, Boudt

and Croux (2010), Croux et al. (2010) and Boudt et al. (2013). Additionally, because the

sample covariance matrix is sensitive to outliers (Hubert et al., 2012, 2015), we use the

robust MCD estimator (Rousseeuw, 1984; Hubert et al., 2012). To maintain the robustness

of d2
t , we use Σ̂R as the initial value in Σ̂t and introduce the filter ρ(·) that mitigate the

3We have also tried different weight functions but none of them robustify the GPVC procedure.
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effect of outliers in the RiskMetrics Smoother. Finally, as a natural robust estimator of

E [(yty
′
t − Σ) I(‖yt−k‖ ≤ ‖yt‖)] we use a weighted estimator that penalizes large values of

d2
t .

4 Note that the modifications mitigate the influence of the additive type of outliers.

3 Monte Carlo experiments

To evaluate the finite sample properties of the PVC, GPVC and RPVC, we carry out Monte

Carlo experiments with small and large dimensions. Following a value frequently used in

the financial literature (McNeil and Frey, 2000; Sentana et al., 2008; Matteson and Tsay,

2011; Luciani and Veredas, 2015; Engle et al., 2017; Trućıos et al., 2018) we consider series

of sample size 1000, which is approximately 4 years of daily data.

Different patterns of contamination, size of outliers and percentage of series contami-

nated are considered. We consider consecutive (C) and isolated (I) outliers in the middle

and close to the end of the sample period. In cases contaminated by isolate outliers, we

added two outliers in the series at positions t = 500 and 999. In a similar way, we added

outliers at positions t = 500, 501 and 998, 999 when two consecutive outliers are considered.

Outliers of size 5 and 10 standard deviations of the univariate uncontaminated process are

contemplated. Finally, we consider uncontaminated series (0% of series contaminated) and

contamination of p% of the series, with p% = 25%, 50% and 100% of the series. For the p%

contaminated series we contaminated the first p% series which appear in the entire system.

Following Andreou and Ghysels (2014), Hu and Tsay (2014a) and Li et al. (2016),

we use the factor model as data generating process (DGP). In the simulation study, we

consider three analyses. First, we analyze if outliers affect the estimation of the number of

volatility components with heteroskedastic dynamic. Second, considering that the number

4At the same time we are working in a robust PVC procedure, another robust procedure is being
developed independently by Monte and Reisen (2016). The main differences between both approaches are
that Monte and Reisen (2016) robustify the procedure of Hu and Tsay (2014a) while we robustify the
procedure of Li et al. (2016). The procedure of Monte and Reisen (2016) replace the generalised covariance
in (3) by a robust version based on Ma and Genton (2000) while we use the robust MCD estimator of
Rousseeuw (1984). Additionally, we mitigate the effect of outliers penalizing large values of the squared
Mahalanobis distance taking into account high and low volatility period using a RiskMetrics Smoother
that avoid returns corresponding to periods with high volatility being considered as outliers. Finally, the
robust procedure proposed in this paper is fast and feasible in large dimensions. Because the GPVC has
shown a slight better performance than the PVC and in addition, because the robust procedure of Monte
and Reisen (2016) is computationally more expensive than the other approaches we do not analyse this
procedure here since Monte Carlo experiments even for small dimension (N = 8) is highly time consuming
and in consequence infeasible in moderate/large dimensions.
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of components with heteroskedastic dynamic is known, we analyze the effect of the outliers

in the estimation of the matrix A in (1). Finally, we are interested in the effects of outliers

in the prediction of the conditional covariance matrix and its implications in economic and

financial applications. In the simulation and in the application we use maximum lag g equal

to 5 in estimators (5) and (6).

3.1 Number of volatility components

First, we are interested in whether the selection of the number of volatility components with

heteroskedastic dynamic is affected by outliers. It is important to mention that, as far as

we know, there is no optimal procedure developed to select the optimal number of volatility

components. For simplicity and illustrative purposes, we use three criteria commonly used

in principal components and factor analysis context. Specifically, we use the ratio estimator

criterion (Lam and Yao, 2012; Ahn and Horenstein, 2013), the BN criterion (Bai and Ng,

2002) and the Kaiser-Guttman criterion (Guttman, 1954).

We consider small and large dimensions (N = 8 and 60) and the factor model was gener-

ated with two and six common factors for N = 8 and 60 respectively. Each common factor

follows a Gaussian GARCH(1,1) process with parameters ω = (1, 2), α = (0.07, 0.03) and

β = (0.83, 0.92) for two factors and ω = (1, 2, 1, 0.5, 2, 3), α = (0.07, 0.03, 0.05, 0.03, 0.02, 0.03)

and β = (0.83, 0.92, 0.90, 0.95, 0.78, 0.87) for six factors. The factor load matrix A was ran-

domly drawn as a matrix with orthogonal columns using the R package pracma of Borchers

(2017) and the idiosyncratic factors were simulated as εt = ε̄t√
N

where ε̄t ∼ NormalN(0, IN)

with N being the dimension of the system and IN the identity matrix of order N ×N . The

initial covariance matrix H0 was simulated as a positive definite matrix using the procedure

of Joe (2006) implemented in R package clusterGeneration of Qiu and Joe. (2015). In all

cases we simulate 1500 observations and discard the first 500 to avoid the influence of the

initial values.

Tables 1 and 2 report the average and standard deviation of the estimated number of

volatility components using the ratio estimator (top panel), the BN5 (middle panel) and

the Kaiser-Guttman (bottom panel) criteria for small and large dimensions respectively.

5Following the rule used in Bai and Ng (2002) the maximum number of components are 4 and 8 for
dimension N = 8 and 60 respectively.
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Additionally, the proportion of estimated components smaller, equal to and larger than the

true number of factors are also reported. Observe that, mainly for the large dimension

case, when the non-robust procedures are implemented, the selected number of estimated

volatility components obtained using any of the three criteria mentioned previously is highly

affected by the presence of outliers. For large dimensions, when the RPVC procedure is

used all criteria estimate correctly the number of components in the presence and absence

of outliers. In small dimension, the ratio estimator and BN criteria estimated correctly

the number of volatility components most of times while the Kaiser-Guttman criterion

underestimated the number of components more than 40% of times.

In the presence of outliers, when the non-robust procedures are used, the BN criterion

overestimates the number of components in both small and large dimension. In large dimen-

sions, the ratio estimator criterion also overestimates the number of volatility components,

with an exception observed when the PVC procedure is used in a context of consecutive

outliers in 100% of series, in which case the number of selected volatility components is

close the obtained using the Kaisser-Gutman criterion. In small dimensions, the ratio es-

timator criterion misestimates the number of selected volatility components in some cases,

being the overestimation case the more frequent. The Kaisser-Guttman criterion under-

estimates the number of components in both small and large dimension. Note also that

in large dimension and absence of outliers, the Kaisser-Guttman criterion estimates cor-

rectly the number of components but in small dimension underestimate the components.

Additional Monte Carlo experiments conclude that as the ratio common factors/dimension

increase, the Kaiser-Guttman criterion estimate incorrectly the number of components (see

supplementary material).

It is important to point out that additional Monte Carlo experiments to analyze deeply

in which cases the ratio estimator and the Kaisser-Guttman criteria can either overestimate

or underestimate the number of components is necessary to be made. However, this deserves

an additional study. We can conclude that in the presence of outliers the criteria estimate

incorrectly the number of components when the DGP is the factor model.
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Table 1: Average and standard deviation of the estimated number of components for uncon-
taminated and contaminated series using the ratio estimator (top panel), the BN (middle
panel) and the Kaiser-Guttman (bottom panel) criteria. Rows (Comp = 1), (Comp =2) and
(Comp >2) present the proportion of cases where the estimated number of components are
smaller, equal and larger than the number of true factors, respectively. Dimension N = 8,
sample size T = 1000 and 1000 Monte Carlo replicates. The factor models are simulated
with two factors.

(a) 0% 25% 50% 100%
(b) ω = 5 ω = 10 ω = 5 ω = 10 ω = 5 ω = 10
(c) I C I C I C I C I C I C

Ratio estimator criterion
Mean 1.992 1.986 1.988 1.987 1.990 1.988 1.989 1.988 1.987 1.987 1.988 1.987 1.988
SD 0.089 0.118 0.109 0.113 0.100 0.109 0.104 0.109 0.113 0.113 0.109 0.113 0.109

RPVC Comp =1 0.008 0.014 0.012 0.013 0.010 0.012 0.011 0.012 0.013 0.013 0.012 0.013 0.012
Comp =2 0.992 0.986 0.988 0.987 0.990 0.988 0.989 0.988 0.987 0.987 0.988 0.987 0.988
Comp >2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 1.998 2.383 2.607 3.106 3.366 2.868 3.100 3.249 3.798 2.281 2.624 2.032 3.108
SD 0.045 0.830 1.017 0.737 0.864 1.031 1.465 0.952 1.385 0.957 1.370 0.830 1.176

GPVC Comp =1 0.002 0.151 0.173 0.050 0.068 0.152 0.233 0.100 0.126 0.222 0.245 0.265 0.106
Comp =2 0.998 0.390 0.271 0.074 0.053 0.150 0.115 0.059 0.060 0.409 0.302 0.502 0.193
Comp >2 0.000 0.459 0.556 0.876 0.879 0.698 0.652 0.841 0.814 0.369 0.453 0.233 0.701

Mean 1.972 2.214 2.694 3.037 2.779 2.517 2.944 3.286 2.437 2.090 1.880 2.143 1.987
SD 0.165 0.794 1.012 0.785 1.268 1.065 1.523 0.908 1.626 0.878 0.975 0.960 0.886

PVC Comp =1 0.028 0.189 0.168 0.069 0.291 0.242 0.290 0.085 0.434 0.258 0.409 0.284 0.303
Comp =2 0.972 0.450 0.207 0.083 0.065 0.199 0.110 0.055 0.216 0.480 0.407 0.404 0.497
Comp >2 0.000 0.361 0.625 0.848 0.644 0.559 0.600 0.860 0.350 0.262 0.184 0.312 0.200

BN criterion
Mean 2.066 2.400 2.502 2.588 2.620 2.449 2.517 2.598 2.599 2.328 2.416 2.532 2.579
SD 0.293 0.726 0.783 0.818 0.833 0.743 0.799 0.814 0.825 0.650 0.732 0.791 0.815

RPVC Comp =1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =2 0.946 0.743 0.679 0.625 0.609 0.703 0.677 0.613 0.621 0.773 0.730 0.656 0.631
Comp >2 0.054 0.257 0.321 0.375 0.391 0.297 0.323 0.387 0.379 0.227 0.270 0.344 0.369

Mean 2.013 3.352 3.650 3.422 3.704 3.658 3.899 3.691 3.872 3.765 3.888 3.856 3.823
SD 0.137 0.531 0.498 0.498 0.457 0.477 0.308 0.462 0.346 0.447 0.334 0.354 0.460

GPVC Comp =1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Comp =2 0.990 0.027 0.010 0.002 0.000 0.001 0.002 0.000 0.004 0.010 0.006 0.001 0.030
Comp >2 0.010 0.973 0.990 0.998 1.000 0.999 0.998 1.000 0.996 0.990 0.994 0.999 0.969

Mean 2.026 3.348 3.651 3.438 3.701 3.649 3.901 3.690 3.891 3.696 3.924 3.845 3.888
SD 0.208 0.551 0.497 0.500 0.458 0.480 0.299 0.463 0.324 0.508 0.283 0.376 0.337

PVC Comp =1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Comp =2 0.983 0.038 0.010 0.002 0.000 0.001 0.000 0.000 0.001 0.023 0.005 0.005 0.007
Comp >2 0.017 0.962 0.990 0.998 1.000 0.999 1.000 1.000 0.998 0.977 0.995 0.995 0.993

Kaiser-Guttman criterion
Mean 1.562 1.549 1.522 1.552 1.521 1.550 1.520 1.548 1.518 1.544 1.517 1.546 1.518
SD 0.496 0.498 0.500 0.498 0.500 0.498 0.500 0.498 0.500 0.498 0.500 0.498 0.500

RPVC Comp =1 0.438 0.451 0.478 0.448 0.479 0.450 0.480 0.452 0.482 0.456 0.483 0.454 0.482
Comp =2 0.562 0.549 0.522 0.552 0.521 0.550 0.520 0.548 0.518 0.544 0.517 0.546 0.518
Comp >2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 1.494 1.527 1.556 1.741 1.658 1.581 1.568 1.661 1.601 1.588 1.599 1.549 1.679
SD 0.500 0.500 0.503 0.533 0.543 0.494 0.500 0.578 0.551 0.499 0.502 0.498 0.490

GPVC Comp =1 0.506 0.473 0.447 0.305 0.377 0.419 0.434 0.394 0.431 0.415 0.407 0.451 0.332
Comp =2 0.494 0.527 0.550 0.649 0.588 0.581 0.564 0.551 0.537 0.582 0.587 0.549 0.657
Comp >2 0.000 0.000 0.003 0.046 0.035 0.000 0.002 0.055 0.032 0.003 0.006 0.000 0.011

Mean 1.433 1.467 1.508 1.674 1.422 1.496 1.478 1.634 1.324 1.528 1.382 1.465 1.391
SD 0.496 0.503 0.512 0.512 0.548 0.502 0.516 0.541 0.475 0.503 0.488 0.501 0.488

PVC Comp =1 0.567 0.535 0.498 0.347 0.606 0.505 0.530 0.396 0.679 0.474 0.619 0.536 0.609
Comp =2 0.433 0.463 0.496 0.632 0.366 0.494 0.462 0.574 0.318 0.524 0.380 0.463 0.391
Comp >2 0.000 0.002 0.006 0.021 0.028 0.001 0.008 0.030 0.003 0.002 0.001 0.001 0.000

(a) percentage of series contaminated. (b) Size of outliers in terms of standard deviations of the
univariate uncontaminated process. (c) position of outliers: at time t = 500 and 999, (I)solated
outliers or at times t = 500, 501 and 998, 999, (C)onsecutive outliers.
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Table 2: Average and standard deviation of the estimated number of components for uncon-
taminated and contaminated series using the ratio estimator (top panel), the BN (middle
panel) and the Kaiser-Guttman (bottom panel) criteria. Rows (Comp < 6), (Comp =6) and
(Comp >6) present the proportion of cases where the estimated number of components are
smaller, equal and larger than the number of true factors, respectively. Dimension N = 60,
sample size T = 1000 and 1000 Monte Carlo replicates. The factor models are simulated
with six factors.

(a) 0% 25% 50% 100%
(b) ω = 5 ω = 10 ω = 5 ω = 10 ω = 5 ω = 10
(c) I C I C I C I C I C I C

Ratio estimator criterion
Mean 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000
SD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RPVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Comp >6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 6.000 7.980 9.926 7.990 9.960 7.999 9.997 7.999 9.997 8.000 10.000 7.766 9.604
SD 0.000 0.140 0.298 0.100 0.196 0.032 0.055 0.032 0.055 0.000 0.000 1.162 1.490

GPVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.066
Comp =6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp >6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.961 0.934

Mean 6.000 7.976 9.941 7.990 9.927 7.999 9.997 7.999 8.886 8.000 6.647 7.832 2.050
SD 0.000 0.153 0.252 0.100 0.597 0.032 0.055 0.032 2.769 0.000 3.950 0.990 0.621

PVC Comp <6 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.139 0.000 0.419 0.028 0.994
Comp =6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp >6 0.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 0.861 1.000 0.581 0.972 0.006

BN criterion
Mean 6.001 6.005 6.005 6.023 6.008 6.005 6.004 6.017 6.010 6.008 6.002 6.013 6.003
SD 0.032 0.071 0.071 0.157 0.089 0.071 0.063 0.144 0.100 0.089 0.045 0.122 0.055

RPVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =6 0.999 0.995 0.995 0.978 0.992 0.995 0.996 0.985 0.990 0.992 0.998 0.988 0.997
Comp >6 0.001 0.005 0.005 0.022 0.008 0.005 0.004 0.015 0.010 0.008 0.002 0.012 0.003

Mean 6.000 7.986 8.000 7.991 7.999 7.999 7.999 7.999 8.000 8.000 8.000 8.000 8.000
SD 0.000 0.118 0.000 0.094 0.032 0.032 0.032 0.032 0.000 0.000 0.000 0.000 0.000

GPVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp >6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Mean 6.000 7.987 8.000 7.990 8.000 7.999 8.000 7.999 7.999 8.000 8.000 8.000 8.000
SD 0.000 0.113 0.000 0.100 0.000 0.032 0.000 0.032 0.032 0.000 0.000 0.000 0.000

PVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp >6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Kaiser-Guttman criterion
Mean 5.999 5.999 6.000 5.999 6.000 6.000 6.000 6.000 6.000 6.000 5.998 6.000 6.000
SD 0.032 0.032 0.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.000 0.000

RPVC Comp <6 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
Comp =6 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000
Comp >6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 6.000 7.218 7.868 7.341 7.453 7.574 8.008 4.901 4.654 5.963 5.701 2.183 3.995
SD 0.000 0.534 0.630 0.660 0.854 0.532 0.737 0.765 0.677 0.508 0.636 0.389 0.071

GPVC Comp <6 0.000 0.000 0.000 0.003 0.014 0.000 0.000 0.787 0.904 0.144 0.353 1.000 1.000
Comp =6 1.000 0.057 0.007 0.096 0.115 0.019 0.017 0.209 0.091 0.747 0.572 0.000 0.000
Comp >6 0.000 0.943 0.993 0.901 0.871 0.981 0.983 0.004 0.005 0.109 0.075 0.000 0.000

Mean 6.000 7.088 7.968 7.617 3.315 7.599 5.089 5.588 2.117 6.188 2.294 3.288 2.000
SD 0.000 0.568 0.501 0.615 0.783 0.502 0.832 0.995 0.322 0.539 0.458 0.860 0.000

PVC Comp <6 0.000 0.000 0.000 0.000 0.989 0.000 0.690 0.429 1.000 0.062 1.000 0.996 1.000
Comp =6 1.000 0.121 0.004 0.071 0.010 0.006 0.277 0.424 0.000 0.686 0.000 0.004 0.000
Comp >6 0.000 0.879 0.996 0.929 0.001 0.994 0.033 0.147 0.000 0.252 0.000 0.000 0.000

(a) percentage of series contaminated. (b) Size of outliers in terms of standard deviations of the
univariate uncontaminated process. (c) position of outliers: at time t = 500 and 999, (I)solated
outliers or at times t = 500, 501 and 998, 999, (C)onsecutive outliers.
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3.2 Eigenvectors associated with non-zero eigenvalues

In this section, we analyze the effects of outliers on the estimation of the eigenvectors as-

sociated with the non-zero eigenvalues. Note that, these vectors are the columns of the

matrix A in the model yt = Aft+ εt and play an important role on the forecast of the condi-

tional covariance matrix. To separate the source of error, we focus on the estimation of the

eigenvectors and assume that we know the true number of components with heteroscedastic

dynamics. We follow Li et al. (2016) and carry out a similar Monte Carlo experiments with

1000 replicates and consider small (N = 8) and large (N = 100) dimension cases. Follow-

ing examples 1 and 4 of Li et al. (2016), the factor model is driven by just one common

factor which follows a Gaussian GARCH(1,1) process with parameters ω = 1, α = 0.07 and

β = 0.83. The idiosyncratic factors are generated as in Subsection 3.1. The factor load

matrix A is also normalized and each element is a random draw of U(−1, 1). Given that

the PVC and GPVC procedures have similar performance (Li et al., 2016) and considering

the extreme computational cost of the Monte Carlo experiment using the PVC procedure

when N = 100, for large dimensions we only consider the GPVC and RPVC procedures.

To compare the estimation of the matrix A we use the two measures6 defined in Li et al.

(2016) and given by

d
(
M̂1,M1

)
=

√√√√
1−

Tr
(
ÂÂ′AA′

)
r

, (7)

d
(
Â, A

)
= 1−

[∑
t(yt − ȳ)′ÂA′(yt − ȳ)

]2[∑
t(yt − ȳ)′ÂÂ′(yt − ȳ)

]
[
∑

t(yt − ȳ)′AA′(yt − ȳ)]
, (8)

where yt is a vector of observed returns, A is the true load factor matrix, Â is the estimated

load factor matrix, r is the number of columns of Â, and M1 (M̂1) is the linear space

spanned by the columns of A (Â), i. e., the volatility (estimated volatility) space. Figure

1 presents the box-plot of the results of the measure defined in (7) for small and large

dimension cases. We can observe that the effect of outliers in PVC and GPVC procedures

is devastating even when just a few outliers are added in the series.

In general, the analyses of the results show that the RPVC is less sensitive to outliers

6These measures and the measures used in the next section are implemented in the R package StatPer-
Meco of Trućıos (2017).
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and also stable regardless the proportion of series contaminated, the size of outliers and

whether the outliers are isolated or consecutive. Note also that, in the absence of outliers,

the performance of all procedures is almost similar to a slightly better performance of

the GPVC procedure. Results using (8) produces similar results and are available in the

supplementary material.

3.3 Conditional covariance matrix

In this last section on Monte Carlo experiment, we use the same DGP used in the previous

section to analyze the effects of outliers on the one-step-ahead forecast of the conditional

covariance matrix. Because the PVC and the RPVC procedures have similar performance

(see, Section 3.2 and Li et al. (2016)), hereafter we focus on the GPVC procedure and

compare it with our robust proposal.

The h-steps-ahead forecast of the conditional covariance matrix can be obtained through

Σ̂y(h) = ÂΣ̂f̂ (h)Â′ + ÂÂ′Σ̂yB̂B̂
′ + B̂B̂′Σ̂y, (9)

where Σ̂f̂ (h) is h-steps-ahead prediction of the conditional covariance matrix of the estimated

components f̂ , Σ̂y is the estimated unconditional covariance matrix of y and Â and B̂ are

estimated eigenvectors. Note that if Σ̂y = I, Σ̂y(h) = ÂΣ̂f̂ (h)Â′ + Σε as presented in Li

et al. (2016).

The one-step-ahead prediction of the volatility component is estimated using a Student-

t quasi-maximum likelihood (QML) GARCH(1,1) model for the GPVC and by the robust

procedure of Boudt et al. (2013) with the filter used in Trućıos et al. (2017) for the RPVC.

Note that although using the RPVC we obtain robust estimates of matrices A and B used

in (9), the volatility components evolving over time are still affected by outliers since they

are the product of the columns of Â multiply the original panel. To overcome this problem,

we use the robust procedure of Boudt et al. (2013) to estimate the conditional covariance

matrix of the volatility components.

Figures 2 and 3 report the MSE7 and the MAE, respectively, for contaminated and

7Results for the MSE were cut-off in the value of 50 for small dimensions and in 3 for large dimensions
to improve the visualization in the figure.
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Figure 1: Boxplot of d(M̂1,M1) for uncontaminated (0%) and contaminated series with 25%, 50% and 100% of series

contaminated. Dimension 8 (top panel) and 100 (bottom panel), T = 1000 and outliers of size ω = 0, 5 and 10 standard

deviations of the univariate uncontaminated process. 1000 replicates
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uncontaminated series in small and large dimension cases8. The results show a devastating

impact of outliers on the forecasting of the conditional covariance matrix when the non-

robust procedure is used. Observe also that for uncontaminated series both procedures

have a similar performance. However, when outliers are present in the series the advantage

of the robust procedure is clear, even in small dimensions. Also note that for both criteria,

when the dimension of the series is small and when only 25% of series are contaminated

with outliers of size ω = 5, the performance of both procedures are similar regardless if

outliers are isolated or consecutive.

It is clear that the non-robust volatility components procedure is very sensitive to outliers

and can lead to improper estimation and forecast of the conditional covariance matrix, even

when the true number of volatility components with heteroskedastic dynamics is known.

The consequences of using a non-robust procedure to forecast the conditional covariance

matrix when outliers are present in the series can be disastrous leading for instance, to

misspecified portfolio allocation and improper construction of risk measures.

To illustrate the effects of misspecification of the selected number of volatility compo-

nents on the prediction of the conditional covariance matrix as well as to illustrate the

effects on the portfolio allocation when using the predicted conditional covariance matrix.

In this exercise, we consider a moderate dimension (N = 40). Table 3 reports the MSE,

MAE, Frobenius distance and Eigenvalue loss function between the true one-step-ahead

conditional covariance matrix (ΣT+1|T ) and the one-step-ahead forecast of the conditional

covariance matrix (Σ̂T (1)) using the GPVC and RPVC procedures with one and two com-

ponents. Table 3 also reports the annualized out-of-sample standard deviations of the true

(weights are obtained using ΣT+1|T ) and selected (weights are obtained using ΣT (1)) MVP

returns.

Results in Table 3 are based on two DGP 9 and the first 25% of series were contaminated

by additive outliers of size ω = 10 at positions t = 500, 501, 998 and 999. Regardless of the

numbers of selected volatility components, slightly better results in terms of MSE, MAE,

8The MSE and MAE are defined respectively as
∑N

i=1

∑N
j=1(σ̂i,j−σi,j)

2

N2 and
∑N

i=1

∑N
j=1|σ̂i,j−σi,j |
N2 where σ̂i,j

and σi,j are the elements of the predicted and true conditional covariance matrix.
9The DGP used are the factor model with one and two common factors. The common factor follows a

Gaussian GARCH(1,1) process with parameters ω = 2, α = 0.03 and β = 0.92 for the factor model with
one common factor (FM 1 Comp) and parameters ω = (1, 2), α = (0.07, 0.03) and β = (0.83, 0.92) for the
factor model with two common factors (FM 2 Comp).
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Frobenius distance and Eigenvalue loss function are obtained using the GPVC procedure

when there are not outliers in the series. In the presence of outliers, a clear superiority of

the RPVC against the GPVC is observed.

Results in Table 3 also reveal that when the data is driven by one common factor,

the GPVC procedure using one or two volatility components presents similar MSE, MAE,

Frobenius distance and Eigenvalue loss function in the absence of outliers. Results using the

RPVC procedure in the absence of outliers are also similar, with a slightly worse performance

in terms of the Frobenius distance and the Eigenvalue loss function when two volatility

components are used. In the presence of outlier, over-specification of the number of selected

volatility components in the GPVC procedure leads to a worse performance while over-

specification using the RPVC procedure improves the results.

For data driven by two common factors, underspecification of the number of selected

volatility component using either GPVC or RPVC procedure presents a worse performance

than using the correct number of volatility components when no outliers are present in the

series. In the presence of outliers, underspecification of the number of volatility components

leads to a worse performance when the RPVC procedure is used. For the GPVC procedure,

a better performance is observed using GPVC with one volatility components than GPVC

with two volatility components. However, results using GPVC with one or two volatility

components are highly affected by outliers and none of them is superior to the results

obtained using RPVC.

4 Empirical application

In this section, we implement the RPVC procedure to analyze the daily returns of stocks

used in the construction of the Nasdaq-100 index traded from January 6, 2001, to May

12, 2017. Because not all stocks of the index were traded during the entire period, we

ended up with N = 73 stocks. The daily prices are available at finance.yahoo.com and were

downloaded on May 14, 2017, using the R package quantmod of Ryan (2017). Returns are

computed as usual by ri,t = 100 × log (Pi,t/Pi,t−1), where Pi,t denotes the adjusted closing

price of the i-th stock at day t for i = 1, ..., 73. Following Engle et al. (2017), to avoid that

very similar stocks being included in the analysis, we look for possible highly correlated
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Figure 2: Boxplot of MSE (ΣT+1|T , Σ̂T (1)) for uncontaminated (0%) and contaminated series with 25%, 50% and 100%

of series contaminated. Dimension 8 (top panel) and 100 (bottom panel), T = 1000 and outliers of size ω = 0, 5 and 10

standard deviations of the univariate uncontaminated process. 1000 replicates. Results were cut-off in the value of 50 for small

dimensions and in 3 for large dimensions to improve the visualization in the figure.
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Figure 3: Boxplot of MAE (ΣT+1|T , Σ̂T (1)) for uncontaminated (0%) and contaminated series with 25%, 50% and 100% of

series contaminated. Dimension 8 (top panel) and 100 (bottom panel), T = 1000 and outliers of size ω = 0, 5 and 10 standard

deviations of the univariate uncontaminated process. 1000 replicates.
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(larger than 0.95) pairs of stocks and if any, we remove one of them of our analysis. Figure

4 reports the unconditional correlation among the 73 stocks where is observed that none

of them is larger than 0.83. The maximum correlation between pairs is 0.808 and more of

correlations (87.7%) are in the interval [0.2, 0.5], 8.7% are smaller than 0.2 and 3.5% larger

than 0.5.
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Figure 4: Unconditional correlation among stocks.

With illustrative purposes we use the one-step-ahead forecast of the conditional covari-

ance matrix to estimate the 1% and 5% Value-at-Risk (VaR) of the equal-weight portfolio

as well as to construct the minimum variance portfolio (MVP) with short-sale constraint.

The VaR is calculated assuming a Student-t distribution where the degrees of freedom is
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estimated by maximum likelihood using the devolatilized residuals10 and the MVP are re-

balanced daily.

In the VaR and the MVP applications, we use a rolling window scheme with window

size of 1000 days and all results are compared with the GPVC procedure, the OGARCH

(Alexander and Chibumba, 1996) model, the classical Risk Metrics (RM) methodology

(Morgan, 1996), the new version called Risk Metrics 2006 (RM2006) (Zumbach, 2007), the

DECO model (Engle and Kelly, 2012) and with the DCC model using composite likelihood

(Pakel et al., 2014). We use the OGARCH procedure because this method has been used

in several papers as a dimension reduction technique benchmark (Santos and Moura, 2014;

Becker et al., 2015; Santos and Ferreira, 2017). The OGARCH model was estimated as

in Becker et al. (2015), which means, considering the number of components equal to the

number of series and each component is modelled as a GARCH(1,1) process. The GARCH

model estimated by quasi-maximum likelihood with Stunden-t distribution were considered

in all cases, except when the RPVC procedure was implemented, in which case was used

the robust procedure of Boudt et al. (2013).

The number of selected volatility components in the GPVC and RPVC procedures could

be estimated using the ratio estimator (Lam and Yao, 2012; Ahn and Horenstein, 2013), the

BN (Bai and Ng, 2002) and the Kaiser-Guttman (Guttman, 1954) criteria at each window.

Because it would be computationally cumbersome, and mainly because there is no agreement

of each method is the best, we used the three criterion to the complete series. The ratio

estimator criterion suggests using one component in both cases (GPVC and RPVC), the BN

criterion suggests using three components in both cases, while the Kaiser-Guttman criterion

suggests using three components when the GPVC procedure is used and four components in

the robust procedure. Given these results in all the windows, we apply the GPVC and RPVC

procedures using one, two, three and four volatility components. The conditional variance

of the volatility component is forecasted using the same strategy described in Subsection

3.3 and conditional covariance matrices in cases with more than one volatility component

10For t = 1, ...1000, the devolatilised residuals were obtained through ep,t = rp,t/
√
σ̂2
p,t where rp,t =

ω × (r1,t, ...r73,t)
′ and σ̂2

p,t = ωĤtω
′ are the portfolio returns and variances at time t respectively with

ω and Ĥt being a vector of equal-weights and the estimated conditional covariance matrix respectively.
The VaR for the period (T, T + 1) is obtained by V aR = Tν,ασ̂p,T+1|T where Tν,α is the α quantile of the
standardised Student-t distribution with ν degrees of freedom (ν is estimated using the portfolio innovations)
and σ̂2

p,T+1|T = ωĤT+1|Tω
′ is the one-step-ahead forecast conditional portfolio variance.
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are forecasted using the DCC model. The DCC model was estimated by Aielli (2013) and

Boudt et al. (2013) methods for the GPVC and RPVC procedures respectively.

Table 4 reports the backtesting performance of different methods when estimating the

1% and 5% VaR of the equal-weight portfolio. The percentage of violation returns smaller

than the VaR, is presented in the first column and the p-values of the back-testing tests of

unconditional coverage (UC) (Kupiec, 1995), independence (IND) and conditional coverage

(CC) (Christoffersen, 1998), are given in the next three columns. The table also reports

the results for the dynamic quantile (DQ)(Engle and Manganelli, 2004) and VaR quantile

tests (Gaglianone et al., 2011). The estimated expected shortfall (ES) with its p-value of

the back-testing test (ESTest) of McNeil and Frey (2000) for the null hypothesis that the

ES is estimated correctly by the model is also reported.

The percentage of violations using the dimension reduction techniques (GPVC, RPVC,

OGARCH) is close to the nominal one and in those cases, the unconditional coverage (UC)

and conditional coverage (CC) tests fail to reject the null hypotheses at 5% of significance

level. Note that results for the 5% VaR using the GPVC procedure are similar regardless

of the number of selected volatility components used. However, the CC test rejects the null

hypothesis of independence in the estimation of the 5% VaR for all GPVC procedures (one

to four volatility components), with no rejection for the RGPC procedures, while for the 1%

VaR the null hypothesis of independence is rejected at 5% level for the RPVC procedure with

one and two volatility components. The percentage of violations using RM2006 methodology

is slightly smaller than the nominal value, with the UC and CC tests failing to reject the null

hypotheses. The RM and RM2006 methodologies have a good performance for the 5% VaR,

but for the 1% VaR, estimated by RM methodology, the null hypothesis is rejected at 5%

level by the UC and CC tests. The DCC and DECO models do not have a good performance

according to the IND test for the 1% VaR. The DQ test rejects the null hypothesis for the

1% VaR, at 5% level, in the DCC and DECO models, RM methodology and RPVC with

one and two components, while the VQR test rejects the null hypothesis for the 1% VaR

estimated by the GPVC, RM and RM2006 procedures and OGARCH model at 10% level.

The McNeil and Frey (2000) test for the ES does not rejects the null hypothesis at 5%

level in any test, and at 10% level rejects the null hypothesis when using RPVC procedure
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Figure 5: 1% VaR of the equal-weight portfolio using the GPVC (solid green line) and
RPVC (dashed red line) procedures (considering one volatility component)

with one and two components, for the 1% VaR and for the 5% VaR using RPVC model

with two components. Considering that when applying the RPVC procedure it is better

to overestimate the number of components than underestimate, we would probably not use

one or two volatility components, but three or four, for most of the windows, we could say

that in terms of VaR violations the performance of the RPVC procedure is quite good in

relationship to all compared methods, especially to the GPVC procedure. We will comment

about the selection of the number of components later.

Figure 5 shows the 1% VaR of the equal-weight portfolio using the GPVC and RPVC

procedures with one volatility component. Note that after large returns, the VaR obtained

using the GPVC (solid green line) procedure is unnecessarily larger than the obtained using

the RPVC (dashed red line) procedure, implying in more capital requirements. Additional

figures comparing the RPVC with other procedures are in the supplementary material.

We now analyze the performance of the selected MVP according to economic criteria.

The results are presented from January 3, 2005, to May 12, 2017 (entire out-of-sample pe-

riod) and also for August 1, 2007, to December 31, 2013 (high volatile out-of-sample period).

Following Engle et al. (2017), Gambacciani and Paolella (2017) and Trućıos et al. (2018),

Table 5 reports three annualized performance measures based on the observed returns of the

selected portfolios: standard deviation (SD) and information ratio (IR) and Sortino ratio

(SO) (Sortino and van der Meer, 1991). For the sake of comparison, we also implement the
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Table 4: Performance of different methods when estimating the 1% and 5% VaR of the
equal-weight portfolio given by backtesting procedure. Percentage of violations (returns
smaller than VaR) and p-values of the unconditional coverage (UC), independence (IND),
conditional coverage (CC), dynamic quantile (DQ), VaR quantile regression (VQR) tests.
Estimated expected shortfall (ES) and p-values that ES is estimated correctly by the model.
VaR 1% (top panel) and VaR 5% (bottom panel). In bold, the cases where the p-values are
smaller than 0.05.

Method % violations UC IND CC DQ VQR ES ESTest

1%
V

aR

GPVC 1VC 0.868 0.448 0.492 0.592 0.668 0.053 -3.817 0.230
RPVC 1VC 0.932 0.699 0.029 0.086 0.020 0.446 -3.787 0.091
GPVC 2VC 0.835 0.342 0.508 0.512 0.612 0.057 -3.829 0.182
RPVC 2VC 0.996 0.983 0.039 0.118 0.023 0.542 -3.801 0.089
GPVC 3VC 0.835 0.342 0.508 0.512 0.611 0.055 -3.825 0.155
RPVC 3VC 0.964 0.839 0.445 0.731 0.506 0.266 -3.781 0.210
GPVC 4VC 0.900 0.567 0.476 0.659 0.652 0.072 -3.822 0.244
RPVC 4VC 1.060 0.737 0.400 0.664 0.644 0.275 -3.794 0.205
OGARCH 0.867 0.448 0.492 0.592 0.553 0.089 -3.814 0.189

RM 1.478 0.012 0.186 0.018 0.000 0.051 -3.853 0.352
RM 2006 0.803 0.254 0.197 0.227 0.215 0.080 -3.956 0.351

DCC 0.964 0.839 0.034 0.103 0.024 0.950 -3.942 0.458
DECO 1.028 0.875 0.044 0.130 0.034 0.811 -3.911 0.575

5%
V

aR

GPVC 1VC 4.724 0.475 0.022 0.056 0.254 0.881 -2.761 0.368
RPVC 1VC 5.141 0.719 0.204 0.418 0.729 0.881 -2.701 0.162
GPVC 2VC 4.724 0.475 0.022 0.056 0.251 0.851 -2.767 0.430
RPVC 2VC 5.077 0.844 0.230 0.477 0.849 0.881 -2.711 0.088
GPVC 3VC 4.724 0.475 0.022 0.056 0.253 0.883 -2.764 0.403
RPVC 3VC 5.109 0.780 0.412 0.687 0.925 0.881 -2.700 0.143
GPVC 4VC 4.724 0.475 0.022 0.056 0.253 0.881 -2.762 0.391
RPVC 4VC 5.206 0.601 0.592 0.756 0.954 0.881 -2.709 0.114
OGARCH 4.916 0.830 0.141 0.331 0.507 0.947 -2.755 0.455

RM 4.948 0.895 0.132 0.319 0.621 0.918 -2.747 0.132
RM 2006 4.434 0.140 0.146 0.117 0.333 0.286 -2.837 0.429

DCC 4.692 0.425 0.437 0.538 0.682 0.353 -2.806 0.146
DECO 4.788 0.585 0.377 0.583 0.529 0.478 -2.796 0.234

equal-weighted (EW) portfolio.11. Note that, as mentioned by Engle et al. (2017) and Ledoit

and Wolf (2017), notwithstanding high information and Sortino ratios as well as minimum

standard deviation are all desirable properties, the MVP is calculated to achieve minimum

variance and SD should be the main focus in the comparison.

First, we analyze the results in terms of SD, the most important criterion. Regardless

of the number of volatility components used, the RPVC procedure always outperforms the

GPVC. Additionally, in most of the cases, the RPVC method outperform the GPVC in

11See, Fan et al. (2012), Engle et al. (2017) and Gambacciani and Paolella (2017) for some references
where the naive equal-weighted portfolio has also used with comparison purpose.
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terms of information and Sortino ratios. The superiority of the RPVC procedure over the

GPVC procedure is in concordance with the Monte Carlo experiments carried out in Section

3. So, in the following, we only compare the RPVC method with the other methods. In

terms of SD, the DECO model never outperform the RPVC method, the OGARCH model

only outperforms the RPVC method with one component in the entire period, and the RM

methodology only outperforms the RPVC method with one and two components in the

second period. However, the DCC and RM2006 models outperform the RPVC method in

all cases.

In terms of the information and Sortino ratios, in general, the RM methodology present

the best performance in both periods, followed by the RM2006 methodology and the DCC

models, and all three methods present better performance than the RPVC method, regard-

less of the number of components used. The DECO model is outperformed by the RPVC

method in all cases, except in the first period when RPVC is applied with three components,

while The DECO model is outperformed by the RPVC method in all cases, except in the

first period when RPVC is applied with three and four components. Similar results where

dimension reduction techniques are outperformed by multivariate volatility models such as

EWMA, ORE (Foster and Nelson, 1996) and RiskMetrics in a MVP context can be found

in, for instance, Han (2006), Santos and Moura (2014), Becker et al. (2015), Caldeira et al.

(2017), Santos and Ferreira (2017) and Ledoit and Wolf (2017). Han (2006) and Han (2007)

point out that not necessarily better statistical models have a better portfolio performance

than simplest ones. However, the RM2006 methodology and the DCC model which outper-

formed the RPVC in terms of SD, IR and SO had poor performance in estimating the 1%

VaR of the EW portfolios. So, in general, the RPVC produced good results.

Additional Monte Carlo experiments (see supplementary material) report that in the

presence of outliers a better performance in the estimation of the one-step-ahead conditional

covariance matrix12 do not necessarily lead to a smaller annualized out-of-sample standard

deviation of the selected MVP returns. In particular, results show that considering the

DCC model as DGP, the RPVC procedure outperforms the DCC procedure in terms of

estimation of the one-step-ahead conditional covariance matrix. However, the estimation

12Better performance in terms of MSE, MAE, Frobenius distance and distance between the largest eigen-
values of the true and estimated covariances matrices.
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using the DCC leads to a small annualized out-of-sample standard deviation of the selected

MVP returns. These results could explain the small SD reported in Table 5 when using

non-robust procedures such as RM2006 and DCC.

Table 5: Annualised performance measures for the equal-weight portfolio and the selected
MVP using GPVC and RPVC procedures (with one to four volatility components) and
other methods. In bold the best performance for each criterion

Jan 3, 2005 - May 12, 2017 Aug 1, 2007 - Dic 31, 2013
Method SD IR SO SD IR SO

1/N 20.7347 0.6272 0.8796 24.8567 0.5064 0.7083
GPVC 1VC 16.8537 0.6773 0.9445 20.2005 0.6159 0.8535
RPVC 1VC 16.8393 0.7875 1.0998 19.9686 0.6419 0.8856
GPVC 2VC 16.8171 0.6888 0.9619 20.1418 0.6400 0.8885
RPVC 2VC 16.7705 0.7924 1.1064 19.9367 0.6437 0.8881
GPVC 3VC 16.8266 0.7105 0.9904 20.1810 0.6431 0.8901
RPVC 3VC 16.6758 0.6939 0.9672 19.9008 0.6065 0.8385
GPVC 4VC 16.7954 0.7131 0.9930 20.1550 0.6505 0.8989
RPVC 4VC 16.6562 0.7283 1.0194 19.8266 0.6757 0.9415
OGARCH 16.8062 0.7801 1.0935 20.1997 0.5559 0.7699

RM 16.8517 1.0880 1.5548 19.9113 0.9218 1.2948
RM 2006 16.3270 0.9890 1.3873 19.4100 0.7997 1.1005

16.3474 0.9307 1.3059 19.5645 0.7779 1.0735
DECO 16.8648 0.7086 0.9892 20.1982 0.5893 0.8137
DCC 16.3569 0.9204 1.2918 19.5649 0.7769 1.0733

(a) SD: Standard deviation of the out-of-sample portfolio returns multiplied by
√

252. (b) IR:
Annualised information ratio. (c) SO: Annualised Sortino ratio.

Figure 6 plots the square of the estimated volatility components and the square of their

conditional volatility for the first four components obtained using GPVC and RPVC meth-

ods using the entire period. We can observe that all components have volatility clustering

and that the first and fourth components, estimated by both methods are very similar, while

the second component estimated by the GPVC method is similar to the third component es-

timated by the RPVC method, while the third component estimated by the GPVC method

is similar to the second component estimated by the RPVC method. Thus, we should com-

pare the estimated first, second, third and fourth volatility components estimated by the

GPVC method, respectively with the first, third, second and fourth volatility components

estimated by the GPVC method. The main difference is in the estimated volatility of the

second and third volatility components, with lower variability, as expected, in the robust

RPVC method.
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Figure 6: Plot of the square of the estimated volatility components (solid black line) and
the square of their conditional volatility for the first four components obtained using GPVC
and RPVC methods (dashed red line) using the entire period.
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5 Conclusions and further research topics

In this paper, we focus on the principal volatility components procedure of Hu and Tsay

(2014a) and Li et al. (2016). These procedures extract few components with time-varying

volatility and the remaining components with constant volatility tackling the problem of

the curse of the dimensionality.

We analyze the problem of modelling and forecasting the conditional covariance matrix

via principal volatility components in the presence of outliers and show that just a few

outliers are sufficient to affect drastically the volatility components and the estimation of

the conditional covariance matrix.

To estimate the number of selected volatility components we used the estimator criterion

(Lam and Yao, 2012; Ahn and Horenstein, 2013), the BN criterion (Bai and Ng, 2002) and

the Kaiser-Guttman criterion (Guttman, 1954). The use of the ration estimator and BN

criteria estimated the number of components close (or equal) to the true number of factors.

However, the Kaiser-Guttman criterion reports problems to estimate correctly the number of

components when the ratio factors/dimension increase, for that reason we do not recommend

its use in such cases.

A new and robust procedure with good finite sample properties based on a robust esti-

mator of the unconditional covariance matrix, a weighted estimator and robust filters were

introduced.

The principal volatility components approach brings an innovative contribution to the

field of modelling and forecasting multivariate volatility, managing portfolios and quantifying

risk. However, it is necessary to caution when the data is contaminated by outliers because

disastrous results can be obtained when using the non-robust procedures of Hu and Tsay

(2014a) or Li et al. (2016). This paper contributes to the literature in two ways: it call the

attention to the risk of using these procedures in the presence of outliers and introduces an

approach robust to outliers and with a similar performance in uncontaminated series.

In our empirical application, the one-step-ahead forecast of conditional covariance matrix

was used to estimate the VaR and also to construct the MVP. In both applications, the

RPVC procedure had a better performance than the GPVC. This results are in concordance

with our Monte Carlo experiments and show the superiority of the RPVC procedure against
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the GPVC one.

The problem of dealing with N/T → 1 or even N > T has not been addressed here.

This topic, as well as PVC in switching regime, are in our research agenda.

The aim of this paper is not to compare the predictability of the volatility using differ-

ent approaches but to robustify the principal volatility components method. An extensive

comparison using other recently procedures such as Matteson and Tsay (2011), Matilainen

et al. (2015), Peña and Yohai (2016), Barigozzi and Hallin (2017) among other in different

scenarios is an interesting further research topic.

Because there are a large number of methods to model volatility and none clearly dom-

inate the others, as suggested by the reviewer, it may be helpful to consider forecasting

combination method. Combination forecasting could also come in hand to tackle to problem

of selecting the “right” number of volatility components in the (robust) principal volatility

components method.

Finally, some papers such as Han (2006), Santos and Moura (2014), Becker et al. (2015),

Caldeira et al. (2017), Santos and Ferreira (2017) and Ledoit and Wolf (2017) have reported

in their empirical application that in a MVP context, dimension reduction techniques are

sometimes outperformed by alternative multivariate volatility models such as EWMA, ORE

(Foster and Nelson, 1996) and RiskMetrics. An interesting research topic is to evaluate

some recent dimension reduction techniques and compare it in an MVP context with other

multivariate volatility models as well as analyze the reasons why a better performance in

alternative models is observed in the papers previously mentioned.
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